

Flexible clocking solutions in advanced processes from 180nm to 5nm

Andrew Cole & Randy Caplan

Outline

Silicon Creations Overview

- IP provider of PLLs, Oscillators, and High-speed Interface
- Founded 2006 self-funded, profitable, and growing
- Design offices in Atlanta, USA and Krakow, Poland
- High quality development, award winning support
- >220 customers (>25 in Israel)
- Mass production from
 7nm to 180nm,
 5nm silicon proven

© Silicon Creations, 2019

• IP support in all major foundries

PLLs from Silicon Creations

- Highest volume analog IPs
 ... robust design and good QA
 are essential. E.g.
 - 28nm FRAC PLL >135 MP tapeouts,
 >1.5M wafers, >4B PLLs
 - 16nm FRAC PLL
 >50 MP tapeouts,
 >1M wafers, >3B PLLs
- PLL products include general purpose, fractional, low jitter AFE, μW IoT, Automotive

© Silicon Creations, 2019

SerDes from Silicon Creations

- Robust and proven from 12nm to 180nm and from <100Mbps to >25Gbps
- Multiprotocol in 12nm, 16nm, 40nm
- Targeted protocols including SGMII, XAUI, RapidIO, V-by-1 HS/US, DP, FPDLink, OIF-CEI, JESD204, CPRI, PCIe1-5, 10G-KR, ...

© Silicon Creations, 2019

Caplan & Cole – Flexible clocking to 5nm FF

Silicon

REATIONS

Outline

Types of Jitter

Conventional Integer PLL

With typical M > 50, LSB change in Fout < 2% = 20,000 ppm

Fractional-N PLL

E.g. Average FBDIV of 10.25

DAC to Fix Fractional Jitter

Feed inverse of impulse errors forward to loop filter. DAC re-uses existing transistors and current, so adds almost no area, and almost no power.

DAC Performance Measured

- Phase noise with and without DAC. Performance is improved dramatically.
- Flexible: Any output frequency with any Xtal
- Good PPA: Use FRAC PLL to make a low jitter clock
 e.g. SRIS clock for PCIe

© Silicon Creations, 2019

Outline

DFS & Supply Sharing

FB Clock output – allows new INT, FRAC on every divided Fin edge. PLL will move predictably to new programmed frequency without losing LOCK for Dynamic Frequency Scaling (DFS).

Exact Spread Spectrum

© Silicon Creations, 2019

Digital modulator continuously changes the target frequency for exact spread spectrum shape & modulation frequency. Soft IP (RTL), 4k gates

Jitter Cleaner PLL

© Silicon Creations, 2019

- Digital Filter (RTL ≈19k gates) sets multiplier for fixed clock for FRAC PLL
- Integrated LTJ <1ps <u>and</u> Bandwidth <1Hz possible ... replaces \$8 to \$30 external chip
- Cleans jitter in noisy recovered clock for Sync-E or Optical Networking; Generates average of spread spectrum input for FIFO

Exact Control of Output Phase

"Microdegree frequency and phase difference control using Fractional-N PLL synthesizers", B. Gray, et. al., Microwave Symposium Digest 2012

Measured Phase Shift (deg) Simulated Measured 10⁰ Theoretical Regression 10-4 Measurement Noise Floor 10 Limit of 24b Fractional Modulator 10 10^{0} 10^{-2} 10^{-4} 10^{-6} 10^{2} Expected Phase Shift (deg)

Anywhere Aligner

- Align two clocks anywhere in a chip by checking alignment and asking FRAC PLL to step phase in/out until aligned
- Clocks will be aligned RTL added to Fractional-N PLL, <8k gates here Clock 1 **Clock Trees** ph_cal.v VDDRE INT, Phase step size, earlier/later FRAC ph_step.v Target INT, FRAC

fs-Accurate Pulse Generator

© Silicon Creations, 2019

PLL Self-Test

© Silicon Creations, 2019

- No external clock or 2nd PLL needed
- Production test screening

Outline

Low-Area PLLs

- Core voltage only, integer only ... for digital core clocking
- Below 0.01mm² in advanced processes
- Very easy to integrate and low power

© Silicon Creations, 2019

IoT PLL

- PLL power as low as **5µW** for whole PLL
- Uses an RTC (32.68kHz) reference ultra-low power
- Fast starting ±2% of freq. Cold in <1.2ms (40 cycles); Warm < 100us
- <0.12mm² in 40nm and below, with no external components

© Silicon Creations, 2019

Low-jitter Ring PLL for PCIe4/5

ON Semiconductor®

NB3N51032

3.3 V, Crystal to 25 MHz, 100 MHz, 125 MHz and 200 MHz Dual HCSL/LVDS Clock Generator

- Uses 25MHz external crystal resonator
- LVDS + HCSL output

© Silicon Creations, 2019

- PCIe Gen 1, Gen 2, Gen 3, Gen 4 Compliant
- Typical power = 100mA from 3.3V = 330mW Add power for LVDS receiver in your chip

- Uses ≥19.2MHz Crystal clock from on-chip Xtal pad & external crystal resonator
- PCIe Gen 1-5 compliant including SRIS
- Typical power from 1.8V + coreV = 43mW
- LVDS receiver not needed
- <0.14mm² die area, 28nm to 5nm

Caplan & Cole – Flexible clocking to 5nm FF

Sub-ps LC PLLs

- Wideband integrated jitter as low as
 250fs from common crystal reference
- Fractional operation
 - All fractional mode techniques can be
 - applied

© Silicon Creations, 2019

Free-running Oscillators

- No external components
- Applications watchdog timer, logic clock for ultra-low power mode ("IoT")

Outline

Summary

- Silicon Creations has been providing reliable, high performance clocking and SerDes solutions since 2006
- Our Fractional-N PLL is production proven with the highest volumes of any mixed signal IP
- Provides very flexible solutions to complex problems with low risk while reducing system BOM
- Optimized PLLs using the same core topology can use microwatts of power for IoT, negligible silicon area for digital chips or replace expensive discrete chips for SerDes clocks