

#### Silicon Creations and Calibre Ensuring Silicon Results will Match Circuit Simulation

### **Andrew Cole**

VP, Silicon Creations

## **Chris Clee**

Product Marketing Manager, Calibre Parasitic Extraction Products



## Agenda: Calibre xACT For Advanced Node Parasitic Extraction

- Advanced node challenges
- Field solver vs. table-based approaches to extraction
- Impact of errors
- Calibre xACT hybrid approach to extraction
- Results: accuracy
- Product portfolio and flows



## **Problem Statement: Accurate Silicon Prediction** Efficient calculation and integration of circuit components

- New processes deliver power/performance/area benefit...
- ...and require unprecedented modeling / simulation accuracy
  - Device characterization/parameter extraction
  - Interconnect modeling
  - Integration into design and simulation flows
  - Integrated solutions for RF design

#### IP providers require early enablement

- Develop on early versions of the PDK
- IP needed early to drive customer applications
  - Mobile, high performance, automotive, etc.
- Integration to enable best-in-class flows



Source: Globalfoundries





3

## **Challenges Specific To 16nm And Below**

#### Multi-patterning

- Misalignment between masks leads to unpredictability
- Impact on parasitics is layout-dependent
- Effectively adds corners to analysis
- Creeping up to the routing layers

#### **FinFETs**

- No "one size fits all" solution
- 3D effects contribute significantly to parasitics, disrupt profile

#### Local interconnect

- Enables greater density, smaller standard cells
- Necessitates 3D device models



## **Rule-based Vs. Field Solver Approaches**





Men

## **3D Line-End Effects**



## **FinFET Challenges: Modeling MOL**

## More Parasitic Effects

• Further refinement by foundries

## **Complex Geometries**

- Fin/poly/diffusion
- Local interconnect
- Contacts

**Tighter Accuracy Requirements** 





## **Impact Of Extraction Errors**

For analog design, tolerance control is particularly critical Transistor-level SPICE simulation gives performance within 3% of silicon when parasitic data is accurate 10-20% error in RC may lead to 5-15% error in delay Forces larger guard bands for timing and signal integrity



# **Calibre xACT For Full-Chip Design**

#### A New Approach



### Calibre xACT Accuracy N16 customer testcase



| Calibre xACT vs.<br>Calibre xACT 3D field<br>solver |       |  |  |  |  |
|-----------------------------------------------------|-------|--|--|--|--|
| Min                                                 | -13.1 |  |  |  |  |
| Max                                                 | 11.3  |  |  |  |  |
| Mean                                                | -0.1  |  |  |  |  |
| Std dev                                             | 0.6   |  |  |  |  |
|                                                     |       |  |  |  |  |





## **Calibre xACT Accuracy** Foundry test pattern vs. foundry golden

All tools meet foundry qualification requirements

Field solver has tighter standard deviation

|                                                                         |                                  |              | Cali      | bre DESIC    | Nrev v2    | 014.4_0.8      | 8 M2N    | M1M3.gds         |              |              |           | _ = ×           |
|-------------------------------------------------------------------------|----------------------------------|--------------|-----------|--------------|------------|----------------|----------|------------------|--------------|--------------|-----------|-----------------|
| Elle Edit View Layer Object Tools Options Verification Macros           |                                  |              |           |              |            |                |          | Help             |              |              |           |                 |
| Z 🖨 🍛                                                                   | / 5                              |              | 6 12      |              |            |                |          |                  |              |              |           |                 |
| 2 Al Back Form - Ruler Select Move Box Path Poly Vertex Notich Spin Lip |                                  |              |           |              |            |                |          | i Viertex 📕 Text |              |              |           |                 |
| Cells                                                                   | Cells (4212 598 2904 561) Lavers |              |           |              |            |                |          |                  | Lavers       |              |           |                 |
| Tree 🗸 List Clips                                                       |                                  |              |           |              |            |                |          |                  |              |              | T Edit    | Show Hide       |
| M2M1M3                                                                  |                                  | 8            | R         | 0            | 8          | N I            | 3 1      | 8                | 8            | 8            |           |                 |
| A v M2M1 M3                                                             |                                  | 112          |           |              |            |                |          |                  |              |              | 26        | NP<br>VMU       |
|                                                                         |                                  | 112          |           |              |            |                |          |                  |              |              | 32        | M2i             |
|                                                                         |                                  |              |           |              |            |                |          |                  |              |              | 33        | M3i<br>m1_text  |
|                                                                         |                                  |              |           |              |            |                |          |                  |              |              | 132       | m2_text         |
|                                                                         |                                  |              |           |              |            |                |          |                  |              |              | 133       | m3_text         |
|                                                                         |                                  |              |           |              |            |                |          |                  |              |              |           |                 |
|                                                                         |                                  |              |           |              |            |                |          |                  |              |              |           |                 |
|                                                                         |                                  |              |           |              |            |                |          |                  |              |              |           |                 |
|                                                                         | \$ 14 14                         | 11/11/11/19  | V /V /V / | VY / V / V / | 191919     | W /W /W /      | 14/4/4/  | 19/9/9/9         |              | 14/14/14     |           |                 |
|                                                                         | 190                              | 29,67,67,67, | 9666      | 669.         | 0,0,0,0    | 9.6.6.6        | 9,6,6,2  | XIII.            | 49.6%        | 966          |           |                 |
|                                                                         | 000                              | 9,9,9,0      | 666       | 25,55        | 962        | 6.8.8          | 20,0,0   | 9.6.6.0          | 6,6,6,       | <i>7666</i>  |           | 350             |
|                                                                         | 198                              | 29,67,67,67, | 9.6,6,6   | 89.992       | 0,0,0,0    | 9.6.6.6        | 9,0,0,2  | XII.             | 19.8.6       | 966          | 3         |                 |
|                                                                         | 000                              | 9,9,9,0      | 666       | 25,55        | 9.6.9.1    | 19.8.8°,       | 2956     | 9.6.6.0          | 8,8,8,       | <i>766</i> 5 |           |                 |
| ■                                                                       | 186                              | 444          | 1944      | 844          | 444        | 9220           | 9,6,6%   | 1949 B           | 1550,0       | 91919s       |           |                 |
|                                                                         | 6.66                             | 9,9,9,4      | 986       | 25,55        | 9994       | <i>6.6.6</i> , | 1999 (c) | 99994            | 9,9,9,       | <i>766</i> , |           |                 |
| 6                                                                       | 1200                             | 444          | 1994      | 8.9.9%       | 444        | 9556           | 9,9,9%   | <i>666</i> 6     | 1550,0       | 9.9.9        |           |                 |
|                                                                         | 0.00                             | じょしん         | 666       | 2555         | 9.6.9.4    | 666            | 7555     | 9.8.9.5          | 6.6.6%       | ZI 5,5 5,    | 1/1/1     |                 |
|                                                                         | 9,87,87,                         | 25,5,5       | 9.8.9.6   | 9,9,9,       | 0,0,0      | 9,6,6,6        | 9,9,9,   | 1919 B           | 9,67,67,6    | 9,0,0,       |           |                 |
|                                                                         | 660                              | じょうんちん       | 6,6,6,    | 9990         | ろしろ        | 6.6.6.         | 2555     | 9,6,6,6          | 9,9,9,       | 25,55        |           |                 |
|                                                                         | 1.8.0                            | 25,5,5       | 9.6.6%    | 9,9,9,       | C9,8,6,    | 9,6,6,6        | 9,9,9,   | 1919 B           | 9,67,67,65   | 9,0,0,       |           | Solid Clear     |
| J                                                                       | (4202                            | 365, 2894.   | .971)     | NoTOTOL      | 102020202  | Stol 616.      | erellen. | 1020202          | 10000        | 070762       | Colors F  | Fiters          |
|                                                                         |                                  |              |           |              | ayout: M21 | v11M3.gds      | Cell: M2 | M1M3             | Depth: [0 0] | /0 Detail:   | 👔 Grid: ( | off Selected: 0 |

| Metric  | Calibre xACT | Calibre xACT<br>3D field<br>solver |
|---------|--------------|------------------------------------|
| Min     | -5.5         | -3.9                               |
| Max     | 3.2          | 2.1                                |
| Mean    | 0.1          | -0.2                               |
| Std dev | 1.5          | 1.1                                |

## Calibre xACT Product Portfolio

- Calibre xACT hybrid extraction engine performance + accuracy for leadingedge, full-chip custom/analog/RF and digital design
- Calibre xACT 3D Field Solver no-compromise, high performance field solver accuracy for memory and cell design
  - Order of magnitude faster than traditional FS
  - Repeatable, deterministic results (as opposed to statistical tools which have inherent error)
  - Capacity for multi-million transistor blocks
  - Common Calibre rule decks and use model
- Calibre xL loop and partial inductance extraction for RF and highperformance design
  - Parasitic inductance associated with signal/return-path "loops"
  - Full chip inductance extraction of on-chip signal interconnects
  - Application in Analog and Digital design, Clock network, Transmission lines...
     "PEEC" selected critical nets extraction

  - Self partial inductance L and mutual inductance M for extracted for each conductor segment.
  - Application In RF/Analog critical signals, Differential Pairs, Small P/G nets...



# **Calibre xACT Flows And Applications**

#### Calibreview

- Designers never have to leave the implementation cockpit
- A Calibreview passes Calibre nmLVS and Calibre extracted parasitics to Cadence Virtuoso design environment
- Contains the connectivity and intentional devices the Calibre LVS tool extracts, as well as parasitic devices extracted by Calibre PEX
- 3DIC extraction solutions for configurations including
  - Fan Out Wafer Level Processing (FOWLP)
  - Wafer on Wafer stacking (F2F and F2B)



# A Siemens Business

www.mentor.com





# **Developing Leading IP**



Restricted © Mentor Graphics Corporation

# Agenda: Developing Leading IP

Collaboration between Silicon Creations and Mentor

- Introduction to Silicon Creations
- Challenges of developing PLLs & SerDes in advanced FinFET processes
- Using Calibre xACT and AFS for 5nm FinFET IP Development
- Silicon Simulation correlations
- Summary/Q&A

16



## **Silicon Creations Overview**

- IP provider of PLLs, Oscillators and High-speed Interfaces
- Founded 2006 self-funded, profitable and growing
- Design offices in Atlanta and Krakow, Poland
- High quality development, award winning support
- >160 customers (>60 in China)
- Over 10 foundries, mass production from 7nm to >180nm, 5nm coming



17

## Awards for quality & support

#### TSMC

- 2017: Audience choice paper, USA OIP
- 2017: "Mixed-Signal IP Partner of the year"
- 2014: "Best Emerging IP vendor"

## SMIC

- 2017 (no awards to anyone)
- 2015 & 2016: Best support
- 2014: Production volume growth
- 2013: Best Analog IP



Restricted  $\ensuremath{\mathbb{C}}$  Mentor Graphics Corporation



# **Fractional Ring PLL**

- "One-Size-Fits-All" Synthesizer: flexibility reduces risk
  - Any crystal; <0.01ppm frequency step</li>
- Programmable Power Jitter Optimization
  - < 1mW
  - Long Term Jitter < 5ps RMS</li>
- Production from 7nm 180nm, 5nm in development
   >150 chips, > 1M wafers in 28nm
   > 40 chips, > 800k wafers in 16nm

#### Derivative PLLs for

- Core voltage only
- Integer-only
- Low area
- Ultra-low jitter
- Ultra-low power





## Why our Fractional PLL?

#### **Competitor PLLs**





#### **Silicon Creations**



#### **Risky & expensive**

- Built new each time
- Narrow input/output ranges
   ... new silicon to change
- Buy a new IP for every clock

#### Lower risk & lower cost

- Predictable, measured
- Wide range, programmable power-performance tradeoffs
- One PLL, many applications save \$, ¥, €
  Best support
  - Restricted © Mentor Graphics Corporation



## **Multi-Protocol SerDes PMA**

- 0.25 12.7Gbps SerDes PMA (28nm LP, 40 LP, 12FFC soon)
- Low Power (mW/Gpbs/lane): SR ~4.5mW, LR ~8.6mW
- Jitter cleaner Tx Ring PLL  $\rightarrow$  Low Area



5-tap DFE + CTLE + Eye monitor + Adaptive Eq. → >30 protocols







## Wire resistance challenge

- Interconnect resistance is climbing quickly!
- Extraction and post extract simulations are becoming more important
- From 40nm to 5nm/7nm, wire resistance ( $\Omega$ /sq) has risen ~6.5x
- Designs are increasingly difficult to verify due to the need for simulation of distributed RC parasitics





## **5nm Simulation Time**

- Schematic sims are out, distributed C-C and R-C extracted simulations are essential
  - We use Calibre Xact to generate accurate netlists
- Models are becoming more complex
- $\rightarrow$  Higher development costs:
  - Longer development cycles
  - Need parallel simulation and more CPU's
  - Need more EDA licenses







## Simulation time scale Makes things worse for PLLs & SerDes





## **RC Reduction and Accuracy**

- RC reduction is one way to decrease simulation time (and cost!)
- Goal: reduce simulation time (lower cost), but preserve reasonable accuracy
- The corner spread can be used as a reference for what is reasonable
  - Corner spread is typically ~40%
  - Some precision can be lost without much effect on margin



Restricted © Mentor Graphics Corporation



## **RC Reduction Example – 28nm VCO**

#### Example:

- compare full RC & reduced RC, CC & reduced CC
- Look for accuracy, simulation time (cost)
- Full RC netlist used as the "gold standard"
- CC netlist runs in 1/10th the time, but at a 7% frequency error
- Highlighted strategy
  - Join R's < 1 Ohm, merge C's < 0.1fF
  - Total cost, in units of [token\*seconds], is reduced 6x
  - Frequency error only  $\sim 0.1\%$

#### Strategy and merge thresholds depend on block, process

significant time (cost) savings possible!

| Simulation                               | Relative Frequency Error [%] | Relative Time [%] | AFS Tokens | Relative Cost [%] |
|------------------------------------------|------------------------------|-------------------|------------|-------------------|
| RCC - gold stanard                       | 0.000                        | 100.0             | 2          | 100.0             |
| RCC w/ 30GHz Tau reduction               | 0.024                        | 91.3              | 2          | 91.3              |
| RCC w/ 10GHz Tau reduction               | 0.024                        | 90.9              | 2          | 90.9              |
| RCC - join R < 0.1 Ohm, join C < 0.01 fF | 0.004                        | 52.2              | 2          | 52.2              |
| RCC - join R < 1 Ohm, join C < 0.1 fF    | 0.125                        | 34.8              | 1          | 17.4              |
| CC only                                  | 6.909                        | 10.4              | 1          | 5.2               |
| CC only, join C < CABS 10%               | 5.554                        | 9.4               | 1          | 4.7               |



## **7nm Area Optimized PLL Locking Simulation vs. Measurement**

- Lowest area PLL for digital clocking 0.009mm2
- Total power under 200µW
- Accurate netlist provides an excellent correlation between AFS transient simulation of frequency vs. time and silicon measurements



Restricted © Mentor Graphics Corporation



## 7nm IoT PLL Current Consumption Accurate parasitics $\rightarrow$ first time right design

#### Simulation

- Mean=3.02uA
- Stddev=1.5%

#### Measurement

- Mean=3.15uA
- Stddev=1.6%





## IoT PLL Fast Locking

- AFS transient simulations accurately predict locking behavior (VCO frequency vs. time)
- 32kHz locking simulations must run for >1ms, so we need not only a fast locking PLL, but also
  - A fast simulator
  - Accurate netlist from Xact (carefully reduced)







## **Silicon Creations Summary**

- Key challenges for FinFET PLLs & SerDes
  - Necessarily long simulations due to tiny time steps and need to simulate a long time for loops to settle
  - High metal resistance requires distributed RC-extraction and netlist reduction if we want simulation results before the silicon comes back

## Solution

- Really accurate extraction from Calibre Xact provides this
- A powerful and fast simulator Mentor AFS
- The reward for us and our customers
  - 7nm low jitter PLLs and ultra-low power PLLs that go to production on first silicon







# Thank you!



